
1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 1

Clustering Game Behavior Data
Christian Bauckhage, Member, IEEE, Anders Drachen, Member, IEEE, and Rafet Sifa

Abstract

Recent years have seen a deluge of behavioral data from players hitting the game industry. Reasons for this

data surge are many and include the introduction of new business models, technical innovations, the popularity of

online games, and the increasing persistence of games. Irrespective of the causes, the proliferation of behavioral

data poses the problem of how to derive insights therefrom. Behavioral data sets can be large, time-dependent and

high-dimensional. Clustering offers a way to explore such data and to discover patterns that can reduce the overall

complexity of the data. Clustering and other techniques for player profiling and play style analysis have therefore

become popular in the nascent field of game analytics. However, the proper use of clustering techniques requires

expertise and an understanding of games is essential to evaluate results. With this paper, we address game data

scientists and present a review and tutorial focusing on the application of clustering techniques to mine behavioral

game data. Several algorithms are reviewed and examples of their application shown. Key topics such as feature

normalization are discussed and open problems in the context of game analytics are pointed out.

Index Terms

Game Analytics; Behavior Mining; Clustering

I. INTRODUCTION

The game industry is facing a surge of data which results from increasingly available highly detailed information

about the behavior of software and users [1]–[6]. Exploding amounts of behavioral data result from growing

customer bases for digital games, new business models, better persistence of games, improving possibilities of

collecting contextual data around user behavior, and modern techniques for recording in-game data [3]. Regardless

of what causes the data deluge, game industry and game researchers alike face a fundamental problem: how to

derive actionable insights from large amounts of high-dimensional and time-dependent data that people generate

while playing games?

This is one of the key question in the emerging area of game analytics which analyzes how games are played. It

aims at a better understanding of player behavior in order to help improving a game’s design, ensure optimal user

experience, identify valuable players or those at risk of leaving a game, personalize or adapt gameplay, or assist

matchmaking.

C. Bauckhage and R. Sifa are with Fraunhofer IAIS, 53754 St. Augustin, Germany; e-mails: {christian.bauckhage,

rafet.sifa}@iais.fraunhofer.de

A. Drachen is with Aalborg University, 2450 Copenhagen, Denmark; email: drachen@hum.aau.dk

Manuscript received November 15, 2013; revised August 10, 2014.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 2

However, analyzing behavioral data from games can be challenging. Consider, for example, Massively Multi-

Player Online Games such as World of Warcraft, Tera, or Eve Online. Each of these games features up to hundreds

of thousands of simultaneously active users spread across hundreds of instances of the same virtual environment

[7]. Each player controls one or more characters with up to hundreds of abilities that evolve over time. While

playing, users can perform dozens of actions per minute which lead to hundreds of state updates by the game. Add

log data recorded by game servers, purchasing histories and other monetization data, information about gaming

hardware, and the result easily exceeds thousands of features per player. When players are active for months or

years, this results in longitudinal datasets [8] which may be further enhanced through contextual information such

as demographic data for marketing or customer profiling [4]–[6].

Game behavioral data are therefore often subject to the curse of dimensionality [9], i.e. the tendency of high

dimensional data to behave counter-intuitive [10]–[12]. Finding patterns under such conditions can be difficult but

is rewarding because patterns detected in behavioral data can inform the game development process [13]–[16]. In

practice, this kind of analysis typically still operates on highly granular levels. For example, 3D heatmaps that

visualize event frequencies are used to investigate if a specific area within a game world sees too high or too low a

concentration of the feature being investigated (e.g. death events as in Fig. 1). Yet, although they are intuitive and

easy to compute, heatmaps alone hardly reveal why a specific concentration occurs and approaches are called for

that can uncover correlations within the given data.

One way of dealing with massive, high dimensional game data is clustering. As an unsupervised method, it

permits the exploration of data and can identify groups of players of similar behaviors or detect the features that

constitute such behaviors. Cluster analysis is widely applied across disciplines and has been readily adopted in game

analytics to find patterns in player or customer behavior [16]–[20], but also to compare and benchmark games and

to improve game AI [21]–[26].

However, the correct use of clustering algorithms requires expertise and an understanding of the application

context. We stress this, because toolboxes for scientific computing have made it easy to run cluster algorithms even

if one is unaware of the underlying principles. Yet, without a proper understanding of the assumptions algorithms

operate on, conclusions derived from such an analysis can be misleading. Additionally, without knowledge of the

game under examination and its mechanics, choices made during analysis —ranging from feature selection and

data pre-processing to visualization and interpretation— run the risk of leading to flawed or useless results.

In this paper, we provide a review and tutorial on the use of clustering techniques in mining behavioral data from

games. We introduce the basic theory of clustering, underlying assumptions, and common pitfalls and discusses

three clustering techniques in detail: the fundamental k-means algorithm, matrix factorization methods, and spectral

approaches. Game related application examples of these algorithms are provided with references to related work

and open problems in this domain are pointed out.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 3

II. CLUSTERING PLAYER DATA

While an exhaustive treatment of cluster analysis is beyond our scope, we still review several fundamental

concepts, since our goal is to provide a tutorial on cluster analysis for game behavioral data. For even deeper

expositions, we refer to the vast literature; a recent overview is provided in [27].

A. Foundations of Cluster Analysis

Cluster analysis is to group a set of objects such that similar ones are assigned to the same cluster. In our context,

objects of interest are players or artificial agents which are represented via finite sets of measurements or features.

There are many different clustering algorithms with various strengths and weaknesses. Often, they are tailored to

different problems in different fields so that the definition of what constitutes a cluster may vary and an understanding

of cluster models is vital for their correct application [28].

Objects are often represented in terms of feature vectors x ∈ Rm and thus embedded in an m dimensional

Euclidean space where each dimension represents a measurable object attribute or property. Data as to n objects are

often gathered in an m× n matrix X ∈ Rm×n whose n columns correspond to the feature vectors of the objects.

Alternatively, data may be given as an n× n proximity (or distance) matrix S containing pairwise similarities (or

dissimilarities) between objects. More complex data structures can be clustered, too, but we will not consider them

here.

One of the first operations typically necessary in a game context is feature standardization in order to normalize

the data (see section IV-B).

Any assignment of objects to clusters can be either hard or soft. While hard clustering unequivocally assigns

each object to a single cluster, soft assignments produce degrees of memberships of objects to clusters (see sections

IV and V).

Note that clustering is not an automatic process, but rather an iterative procedure of knowledge discovery that

requires choosing and comparing algorithms and parameters. Accordingly, clustering requires care because the same

data can lead to different outcomes depending on algorithms and parameters considered. There is thus no “correct”

algorithm but rather a question of testing algorithms and parameters.

Classification methods, too, are used for player or agent behavior analysis. Classification differs from clustering

in that the goal is to assign new objects to pre-defined categories. For game behavior data where suitable categories

are typically unknown a-priori, it is therefore common to apply classification only after cluster analysis has been

performed.

B. Types of Clustering Algorithms

Clustering algorithms can be categorized according to their underlying models. The following taxonomy provides

a basic overview but is not the only possible typification (see [27]).

Hierarchical clustering algorithms are greedy approaches based on proximities. Clustering is agglomerative

(beginning with individual objects and merging them) or divisive (beginning with the whole set of objects and

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 4

partitioning it). Care must be taken to ensure that outliers do not cause cluster merging (chaining). Generally, these

models do not scale well to big data and critically depend on appropriate distance functions. Finally, hierarchical

clustering does not produce subsets but hierarchies of objects.

Centroid clustering is frequently used in game analytics, mainly because of the simplicity and popularity of the

k-means algorithm (Lloyd’s algorithm). Centroid models represent clusters in terms of central vectors which do

not need to be actual objects; yet, variants such as k-medoids determine centroids from among the given data.

Using centroid methods, analysts must define the number of clusters; algorithms then determine suitable centers

and assign objects to the nearest one. Again, different distance measures are possible and lead to different variants

of centroid clustering (see section IV).

Distribution-based clustering uses statistical distribution models such as Gaussian mixtures. Clusters reflect how

likely it is that objects belong to the same distribution. Distribution models provide information beyond mere cluster

assignments. They can reveal correlations of attributes, but may suffer from over-fitting if the model complexity is

not constrained. Importantly, these models produce questionable results, if the distribution that is tested for does

not match the data well. In particular, the common practice of assuming data to adhere to Gaussian distributions is

often erroneous.

Density clustering determines areas of high density and applies local density estimators so that clusters (i.e. regions

in a data space) can have arbitrary shapes. Density clustering requires analysts to define density parameters and

termination criteria. Common methods are self organizing maps, mean-shift, or DBSCAN [14], [29], [30]. The key

limitation of these methods is the need for a density to drop sharply at cluster boundaries. So far, density-based

models have rarely been used on game data but might find use soon as they can be tuned for efficiency [31] and

are able to handle noise which is a common occurrence in behavioral game telemetry [3], [14].

C. Model Validation

Clustering results need to be validated before used further. A good clustering consists of clusters with high

intra-cluster similarity and low inter-cluster similarity. However, these notions critically depend on whether vector,

ratio, ordinal, categorical, Boolean, or interval-scaled features are considered.

Many quality measures have been proposed to assess how well different algorithms perform. Two common

approaches are internal and external evaluation. While internal evaluation operates on the data itself, external

validation evaluates results based on data not used during cluster analysis. Both approaches have their strengths and

weaknesses. For example, methods that assign high scores to algorithms that produce high intra-cluster similarity

and low inter-cluster similarity are biased towards centroid clustering algorithms and thus may overrate their results.

External validation may suffer from the fact that clustering is often used in situations where there are no known

classes or other prior knowledge to compare with.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 5

III. CHALLENGES IN GAME DEVELOPMENT

Clustering behavioral data from games does not pose unique challenges per se since problems due to dimen-

sionality and scale exist in other fields as well. Similarly, challenges related to the choice of algorithms and the

application of results are known in other domains, too. However, the diversity in the design of digital, analog, and

augmented reality or real world games means that cluster models may not transfer well across games even within the

same genre thus adding further complexity [3], [32]. Hence, key concerns encountered when using cluster analysis

to evaluate player behavior include:

a) Validation: This is a common problem in analytics that requires expertise. Moreover, while clustering

algorithms are increasingly available in statistical software, testing procedures are not always provided.

b) Interpretation and visualization: Validated results should be interpreted w.r.t. the application context. A

model can match the data but nevertheless be uninformative. Careful feature selection helps avoiding results of low

practical value.

c) Time-dependency: Players may change their behavior, game communities evolve, and game content may be

updated. Therefore, clusters, too, may evolve [20]. Traditional cluster analysis provides a static snapshot of behavior

and thus has a limited shelf-life. Accordingly, analysis should be re-run after patch releases and should follow a

regular schedule for persistent games.

d) Progress dependency: Games often feature progression mechanics, for example, in form of characters

gaining experience points or improved equipment. Because players might be at different stages, certain inquiries

should not be done across an entire population, but consider stages. The work in [16] highlighted this issue by

looking at players in a MMORPG where features such as, say, a character’s wealth would not make sense without

taking into account the character’s level of progression.

e) High dimensionality and big data: Cluster analysis of game data must cope with feature vectors of up to

thousands of dimensions. In addition, very large data sets are becoming increasingly common. Yet, many common

clustering algorithms do not scale well to large data sets or are inept when dealing with the peculiar geometry

of high dimensional spaces where, among others, distances between points become relatively uniform [10]–[12]

which invalidates the notion of a nearest neighbor. Big data and high dimensionality are active areas of research

and clustering methods for these settings are becoming increasingly available [33]–[35].

f) Data type mixing: A typical problem of behavior analysis in games is the mixing of data types as behavioral

features are often measured in different ways. For example, ratios (e.g. kill/death ratio or hit/miss ratio) may be

mixed with categorical data (e.g. character type). Such data require a careful consideration of data normalization

strategies [36].

g) Feature selection: Because of the wide range of behavioral features, feature selection is of increasing

relevance for the game industry. While monetization metrics such as DAU (Daily Active Users) consider features

that apply across games, these can be defined in different ways. For example, DAU provides a concrete temporal

frame, but what constitutes an “active” player is nebulous. Problems with feature selection usually occur when

evaluating player behavior w.r.t. game mechanics. Observing, say, that players will likely churn at level 8 is in and

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 6

of itself not valuable; discovering the underlying causes is. Identifying relevant features in situations like this can

be difficult but cluster analysis can assist in unveiling reasons such as overly parsimonious reward mechanisms [5].

IV. A BASELINE ALGORITHM: k-MEANS CLUSTERING

We begin the tutorial part of this paper by studying k-means clustering. Although the k-means algorithm is

a popular and widely used baseline technique, experience shows that practitioners are often not familiar with

its principles. That is to say that the algorithm operates on implicit assumptions which, if ignored, may lead to

seemingly unreasonable results. We analyze these principles, discuss when and how to apply k-means, and point

out pitfalls in its use.

We begin by considering data in Euclidean spaces. Hence, assume a data set X = {x1,x2, . . . ,xn} ⊂ Rm whose

n elements xj are m dimensional real-valued vectors that are to be clustered. Whenever we set out to cluster such

data, we are interested in regularities within the sample and must decide how to characterize and how to search for

latent structures.

The k-means algorithm provides the arguably most popular approach to these problems. It represents structures

in terms of subsets of X and attempts to subdivide the data into k different clusters Ci ⊂ X which meet the

following criteria: First of all, the clusters should be pairwise disjoint so that Ci ∩Cj = ∅ for i 6= j. Second of all,

the k different clusters should cover the data so that C1 ∪ C2 ∪ . . . ∪ Ck = X . Third of all and most importantly,

data points assigned to a cluster Ci are supposed to be similar.

While the first two criteria are well defined, the third one hinges on the rather intuitive notion of similarity.

Indeed, there are many ways of defining similarity and differences between clustering algorithms usually trace back

to different notions of what it means to be similar. The idea applied in k-means clustering is to represent clusters

Ci by centroids µi ∈ Rm and to measure similarities in terms of Euclidean distances between centroids and data

points. Hence, two data points are considered similar if their distances to a common centroid are small and point

xj will be assigned to cluster Ci if its distance to µi is less than that to any other centroid.

This basic idea reduces k-means clustering to the problem of finding appropriate centroids. Mathematically, this

can be cast as the problem of minimizing the following objective function

E(k) =

k∑
i=1

∑
xj∈Ci

∥∥xj − µi

∥∥2 (1)

with respect to k centroids µi. In other words, minimizing (1) requires to partition the data into k clusters Ci such

that sums of distances between data points and their closest cluster centroid become as small as possible.

Note that the objective in (1) can also be expressed in terms of indicator variables zij which register for any

data point xj whether it belongs to cluster Ci. That is, by defining

zij =

1, if xj ∈ Ci

0, otherwise
(2)

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 7

we find the objective function in (1) to be equivalent to

E(k) =

k∑
i=1

n∑
j=1

zij
∥∥xj − µi

∥∥2. (3)

Although both objectives formalize an intuitive problem, an optimal solution, i.e. global minimizers µ1, . . . ,µk,

may be difficult to obtain. Even for 2D data and k = 2, there is no guarantee for the best possible solution to be

found in reasonable time [37]. This is important to know, because it indicates that the k-means algorithm is but

a heuristic for dealing with a surprisingly hard problem.

Indeed, the k-means algorithm merely realizes greedy optimization. When started, say at t = 0, it randomly

initializes the parameters µ
(t)
1 ,µ

(t)
2 , . . . ,µ

(t)
k to optimize. Given these initial guesses, the data are clustered accord-

ingly:

C
(t)
i =

{
xj ∈ X

∣∣∣ ∥∥xj − µ
(t)
i

∥∥ ≤ ∥∥xj − µ
(t)
l

∥∥ ∀ l 6= i
}
. (4)

Once clusters have been determined, the algorithm updates its estimates of their centroids using

µ
(t+1)
i =

1

ni

∑
xj∈C(t)

i

xj (5)

where ni = |C(t)
i | denotes the number of elements currently assigned to cluster Ci. As these updates may lead to

a new clustering, the iteration counter is set to t = t+1 and steps (4) and (5) are repeated until the assignment of

data points to clusters does not change anymore or t exceeds a predefined number of iterations (see Fig. 2 for an

illustration).

It is easy to prove that updating each centroid to the sample mean of its cluster will never increase the value of

objectives (1) or (3). Each iteration therefore improves on the previous result and k-means usually converges quickly.

However, as the algorithm starts from a random initialization, it is not guaranteed to find the global minimum of

its objective. Since it typically converges to a local minimum, it is pivotal to run k-means several times so as

to empirically determine good clusters. Yet, even then, k-means may produce questionable results when seeded

inappropriately. Indeed, intelligent initializations are actively researched [38], [39] and arbitrary initialization are

considered harmful; initial centroids should at least be selected among the available data points.

A. Probabilistic Interpretation

In appendix A, we apply maximum likelihood arguments to show that the k-means algorithm fits a simplified

mixture of Gaussians. In other words, k-means clustering implicitly assumes the given data to consist of

k Gaussian densities and produces corresponding results. Here, we resort to linear algebra to show that, in

addition, the k-means algorithm implicitly clusters data into Gaussians of low variance.

To expose this, we consider an arbitrary cluster Ci computed during one of the iterations. Looking at (1), we

note that this cluster contributes a term of
∑

xj∈Ci

∥∥xj − µi

∥∥2 to E(k) and that the smaller this contribution the

more likely this cluster will persist throughout the optimization procedure.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 8

If we set yj = xj − µi and collect the new vectors yj in a matrix Yi ∈ Rm×ni , it is easy to see that∑
xj∈Ci

∥∥xj − µi

∥∥2 =
∥∥Yi

∥∥2
F

(6)

where ‖·‖F denotes the matrix Frobenius norm. However, for the Frobenius norm we have
∥∥Yi

∥∥2
F

= tr[YiY
T
i]

where the trace operator tr[·] sums the diagonal entries of a matrix. We also note that Σi = YiY
T
i is a covariance

matrix. It can be diagonalized using Λi = UT
i ΣiUi where the orthogonal matrix Ui contains the eigenvectors

of Σi and Λi is a diagonal matrix whose non-zero entries denote eigenvalues or variances along the principal

axes of cluster Ci. Finally, we recall that traces are invariant under similarity transformations, i.e. tr[Σi] = tr[Λi].

This, however, proves our claim: By minimizing the objective in (1), the k-means algorithm minimizes traces of

covariance matrices and therefore produces compact clusters of low internal variance.

B. Common Pitfalls

We just saw that the k-means algorithm is tailored towards locally Gaussian data. Put differently, if k-means

clustering is applied to data that do not contain compact convex subsets, it is unrealistic to expect it to identify

reasonable clusters. Figures 3 and 4 illustrates what this may mean in practice.

Figure 3(a) displays a set of 2D data in which human observers immediately recognize two distinct linear

structures. Yet, if we set k = 2 and run k-means, the result will look like in Fig. 3(b). That is, for data such as

these, the algorithm will determine clusters that hardly agree with human intuition. In particular, we note that the

cluster centroids (�) found are rather far from actual data points but form the centers of two imaginary circles

which each encompass about half of the data. Given our above analysis, this result was to be expected and perfectly

illustrates the tendency of k-means clustering to produce compact, blob-like clusters.

As a remedy, the literature often suggests to normalize the data to zero mean and unit variance using ydj =

(xdj −µd)/σ
2
d where xdj is the dth component of xj and µd and σ2

d denote mean and variance along dimension d.

However, Fig. 3(c) shows that this hardly affects the result; the data are simply not Gaussian enough for k-means

to identify the structures a human would consider important.

Hence, if we insist on applying k-means clustering to non-Gaussian data, we need more appropriate pre-

processing. A reasonable idea is to whiten the data. Using the sample mean µ = 1
n

∑
j xj and setting yj = xj −µ

provides the sample covariance matrix Σ = YYT which can be decorrelated Λ = UTΣU through principal

component analysis. Still, variances along the different dimensions will usually differ; but since Λ−1/2ΛΛ−1/2 = I,

the transformation

wj = Λ−1/2UT (xj − µ) (7)

maps the data to vectors for which 1
n

∑
j wjw

T
j = I. That is, after whitening, variances in the directions of the

principal axes of the data are identically 1. Geometrically, we can picture this transformation as mapping the data

(close) to the surface of a sphere where possible clusters will be more separated than in the original representation.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 9

Figure 3(d) shows the whitened data and the corresponding result of k-means clustering. Based on this example,

it appears that proper preprocessing enhances the chances for the k-means algorithm to identify structures

that are not necessarily Gaussian. Nevertheless, there is still no guarantee for it to do so.

Figure 4 presents another example of where k-means may be inappropriate. It shows a waypoint graph that

indicates how non-player characters may move through a dungeon. Faced with the problem of path planning,

modern game AI resorts to hierarchical variants of the A∗ algorithm. Here, clustering can help to automatically

identify coherent areas of a map and thus facilitate hierarchical path planning. However, even though the waypoints

in this example form rather blob-like clusters, the k-means algorithm constantly produces unintuitive results as it

groups together waypoints from different rooms. This example therefore illustrates that k-means clustering considers

geometry rather than topology. If two waypoints are spatially close they may end up in the same cluster, even though

their geodesic distance is actually large. Yet, the example also points out that algorithms such as spectral clustering

which consider topological information (i.e. edges between vertices in a graph) may produce much more reasonable

results. Therefore, k-means clustering should not be considered the only tool available to analysts. Rather,

clustering algorithms should be chosen according to the type of information available. Further details on spectral

clustering will be discussed in section VI.

To conclude this section, we point out yet another pathology, namely the case of very high dimensional data

where we are given n data points xj ∈ Rm but n� m. Here, the notion of similarity invoked by k-means may be

useless, because as dimensions grow so do distances and it becomes very likely that all the given data are equally

far apart [10]–[12]. Hence, centroids determined by k-means clustering will be far from any data point and the

decision of whether to assign a data point to a cluster will basically depend on minuscule random variations rather

than on structural properties. Therefore, for high dimensional data, k-means clustering should be applied only

after dimensionality reduction.

C. Soft k-Means

Appendix A shows that k-means clustering is closely related to Gaussian mixture modeling. This insight suggests

several extensions of the original approach. On the one hand, the algorithm can be extended such that it also

determines variance parameters. On the other hand, the requirement of pairwise disjoint clusters may be relaxed by

allowing the indicator variables zij in (2) to assume values 0 ≤ zij ≤ 1 such that
∑

i zij = 1. This way, data points

can be assigned degrees of membership to different clusters. Both extensions are variants of what is called soft or

fuzzy k-means [36] and usually require the expectation maximization (EM) algorithm for parameter estimation [40].

D. Kernel k-Means

Looking at the objective in (3), we note that we may write

E(k) =

k∑
i=1

n∑
j=1

zij
(
xT
j xj − 2µT

i xj + µT
i µi

)
. (8)

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 10

Furthermore, we note that

µT
i xj =

1

ni

n∑
l=1

zilx
T
l xj (9)

and that

µT
i µi =

1

n2i

n∑
l=1

n∑
j=1

zilzijx
T
l xj , (10)

The k-means objective function can thus be written entirely in terms of inner products between data vectors. This

allows for invoking the kernel trick where we replace inner products xT
j xl by non-linear kernel functions k(xj ,xl).

This trick has become a staple of data analysis as it allows for using linear techniques to deal with nonlinear problems

[41]. Regarding k-means clustering, one may thus obtain reasonable clusters even for non-Gaussian data. However,

invoking the kernel trick usually increases computation times, requires experience in choosing an appropriate kernel

function, and necessitates particularly careful initializations of the algorithm.

E. k-Medoids Clustering

Sometimes, we are dealing with data which are not additive so that the notion of a mean is ill defined. An example

related to game mining is the problem of clustering player names. As such, names, i.e. strings of characters, do not

allow for computing averages. Nevertheless, we can compute, say, the edit distance between strings and the fact

that the k-means algorithm can be kernelized indicates that it is applicable to situations like these. An even simpler

solution is to consider the use of the k-medoids algorithm. In appendix B, we prove that the data point xj ∈ X
which minimizes

xj = argmin
xl

1

n

n∑
i=1

∥∥xl − xi

∥∥2 (11)

is the point in X that is closest to the sample mean µ. It is called the medoid of X . Since the minimizer in (11)

can be computed for any norm rather than just for the Euclidean norm, the notion of a medoid applies to any kind

of data for which we can define distances. This suggests a variant of k-means clustering where we proceed as usual

but replace the computation of means in (5) by the computation of medoids.

V. CLUSTERING AS MATRIX FACTORIZATION

Interestingly, the task of k-means clustering can be viewed as a matrix factorization problem. In data mining

and pattern recognition, factorization methods are frequently used for dimensionality reduction or latent component

detection. In the basic setting, we are given a data matrix X ∈ Rm×n whose n columns are m dimensional vectors

xj and we look for two factor matrices W ∈ Rm×k and H ∈ Rk×n such that

X ≈WH (12)

where k � min{m,n}. Usually, the columns wi ∈ Rm of W are called basis vectors and the columns hj ∈ Rk

of H are coefficient vectors. This becomes clear if we consider that for every column xj in X, there is a column

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 11

hj in H and that xj ≈Whj . That is, upon successful factorization every data point xj can be approximated as a

linear combination of the columns of W.

To see how this relates to k-means clustering, we consider a data matrix X, a matrix of centroid vectors M, and

a matrix of indicator variables Z. Given the above notation, we then find that, upon convergence of the k-means

algorithm, we have
x11 . . . x1n

...
...

xm1 . . . xmn

 ≈

µ11 . . . µ1k

...
...

µm1 . . . µmk



z11 . . . z1n

...
...

zk1 . . . zkn


or simply X ≈MZ. In other words, we can think of the k-means algorithm as an approach towards approximating

xj ≈Mzj . (13)

where actually xj ≈Mzj = µi, because the coefficient vector zj is a binary vector with exactly one component

equal to 1.

Accordingly, the objective in (1) can also be stated as a quadratic optimization problem involving matrices,

namely

min
M,Z

∥∥∥X−MZ
∥∥∥2. (14)

Even though this form may look even more innocent than the ones in (1) and (3), it still constitutes a difficult

problem. Indeed, this formulation allows us to better appreciate the difficulty of k-means clustering. Note that (14)

is convex in M. That is, by fixing Z, (14) turns into a quadratic problem in M for which there is a closed form

solution. Likewise, it is convex in Z so that, by fixing M, one can easily compute the optimal Z. Yet, the problem

is anything but convex in the product MZ. If both matrices are to be determined simultaneously, the objective

function typically shows numerous local minima and no algorithm is known to date that is guaranteed to find a

globally optimal solution in reasonable time.

A. k-Means as Constrained Quadratic Optimization

Looking at (14) reveals that the k-means heuristic is an alternating least squares scheme. In our new terminology,

the k-means algorithm first fixes M and solves for Z, then fixes Z and solves for M, and repeats these steps

until convergence. Alas, things are more complicated because k-means actually deals with a constrained quadratic

optimization problem. Note that the centroid vectors µi, i.e. the columns of M, must be convex combinations of

data points xj . That is, µi = Xyi where yi is an n dimensional vector with ni entries equal to 1/ni and n− ni
entries equal to 0. To express all centroids at once, we may write M = XY and keep in mind that Y must be

non-negative, i.e. Y � 0, that its columns must sum to one, i.e.
∑

j yji = 1, and that they should have high entropy

H(yi) = −
∑

j yji log yji � 0.

Second of all, matrix Z is supposed to be a binary matrix. We can enforce this by requiring Z � 0,
∑

i zij = 1,

and H(zi) = −
∑

i zij log zij = 0. Incorporating these constraints into (14), we find that k-means clustering can

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 12

be formalized as the following constrained quadratic problem

min
Y,Z

∥∥∥X−XYZ
∥∥∥2

s.t. Y � 0, 1Tyi = 1, H(yi)� 0 (15)

Z � 0, 1T zj = 1, H(zj) = 0.

B. Archetypal Analysis

If we drop the entropy constraints in (15), we obtain

min
Y,Z

∥∥∥X−XYZ
∥∥∥2

s.t. Y � 0, 1Tyi = 1, Z � 0, 1T zj = 1 (16)

and recover a problem known as archetypal analysis (AA) [42]. Dropping entropy constraints has an interesting

effect. Instead of computing basis vectors M = XY that correspond to local means, AA determines basis vectors

that are extreme points of the data. In fact, the archetypes in matrix M reside on the data convex hull. Thus, AA

does not operate on any implicit density assumptions; it can be computed quickly and often yields results that

are more pronounced than those of k-means clustering (see section VII).

C. Non-negative Matrix Factorization

If we also drop the stochastic constraints in (16) and relax the requirement that M = XY, we obtain

min
M,Z

∥∥∥X−MZ
∥∥∥2

s.t. M � 0, Z � 0 (17)

a problem known as non-negative matrix factorization (NMF) [43]. NMF is particularly useful whenever given

data are non-negative and it typically yields sparse basis vectors. That is, one can show that NMF basis vectors

form a cone that includes the data [44] and therefore contain only few entries significantly larger than zero. This

way, NMF allows for part based representations, i.e. for linear combinations over latent factors that each represent

independent aspects of the data.

VI. SPECTRAL CLUSTERING

In this section, we discuss spectral clustering, another approach that applies matrix factorization. While k-means

clustering is guided by local properties of data (i.e. distances to centroids), spectral clustering assumes a global

point of view. While k-means clustering is clustering with m×n data matrices X = [x1 . . .xn], spectral clustering

considers n × n similarity matrices S whose entries Sij = s(xi,xj) indicate possibly abstract affinities between

data objects. It is therefore related to the problem of graph partitioning, because affinity matrices S can be seen as

weighted graph adjacency matrices.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 13

Since spectral clustering is less well known among game analysts, we discuss it using an instructive example,

namely, the problem of automatically partitioning game maps into coherent units. This is motivated by the fact that

in-game behavior often depends on in-game location. Consider, for instance, the part of the Quake II map q2dm1

in Fig. 5. The figure highlights distinct architectural features for which the game mechanics demand different

behaviors. Moving along the ledges, for instance, requires more prudence than moving in the yard, as players try

to avoid dropping to their virtual deaths. If it was possible to automatically identify coherent parts of a map, say

from analyzing movement behaviors of players, we might either use this information to distinguish different play

styles based on localized activities [16], [17] or to train gamebots that behave more human-like [45], [46].

Here, we assume the data to be given in form of a waypoint graph derived from observations of human

movement behavior. Indeed, using the QASE programming interface [47] for Quake II and k-means clustering,

it is straightforward to compute waypoint graphs as shown in Fig. 6. Looking at the figure, we recognize a graph

whose n vertices correspond to prototypical 3D player positions during a game and whose edges indicate observed

transitions between waypoints; different measures of waypoint similarity are discussed below.

In a seminal paper [48], Fiedler showed that spectral decompositions allow for graph partitioning and proved that

clusters can be determined from looking at the eigenvectors belonging to the k smallest eigenvalues of the graph

Laplacian L = D− S where D is a diagonal matrix with Dii =
∑

j sij .

Spectral clustering therefore relies on algebraic graph theory and its name derives from the fact that it clusters

according to spectral properties, i.e. eigenvectors, of the Laplacian matrix. Unfortunately, the related machine

learning literature is often vague as to why the Laplacian emerges in this context and thus obscures implicit

assumptions of this method. Yet, there is an intuitive physical analogy: Imagine the graph in Fig. 6 as a spring-

mass system where every vertex corresponds to a point mass and every edge to a spring. If one or more of

the masses were excited (moved from their location and let loose again), the system would vibrate. Now, recall

that such vibrations are characterized by second order differential equations whose solutions are given in form of

eigenfunctions of the Laplace operator. As the Laplacian matrix is a discrete analogue of the Laplace operator,

we can thus understand spectral clustering as the process of looking for standing waves on a graph and grouping

together vertices that show the same dynamics.

Though there are many variants of spectral clustering [49]–[52], they usually vary the following baseline approach.

Given the normalized Laplacian

L = I−D−
1
2 SD−

1
2 (18)

of S, we compute its decomposition, determine the k smallest eigenvalues, collect the corresponding eigenvectors

in a matrix U ∈ Rn×k, apply k-means to the n rows of U, and thus group the n objects under consideration.

Given the problem of finding four clusters in the graph in Fig. 6, the results in Fig. 7 illustrate differences between

spectral clustering and other techniques. Ward-linkage (Fig. 7(a)) is a hierarchical clustering algorithm that tends to

group densely co-located point and k-means clustering (Fig. 7(b)) produces rather equally sized blob-like clusters.

In our example, neither approach yields appropriate partitions. The upper ledges, for instance, are horizontally split

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 14

into two clusters and some of the points in the yard and on the stairs are fused into amorphous clusters. Note that

both methods only consider coordinates of data points but ignore additional relational information. This is different

for spectral clustering. Because of this, it is able to detect intrinsic structures in the waypoint graph that correspond

to architectural features of the map.

Figure 8(a) shows 4 areas that result from spectral clustering using waypoint similarities which were computed

based on their Euclidean distances

sij = e−
‖xi−xj‖

2

2σ2 where σ = 10. (19)

Here, the upper ledges and the yard form prominent clusters. Still, we observe artifacts such as the amorphous

cluster in the center and the solitaire point on the far right. However, if we consider similarities according to

topological distances, a even clearer picture appears.

The similarity matrix used to produce the result in Fig. 8(b) was given by sij = 1 − dij where dij indicates

the length of the shortest path between waypoint i and j. Here, the upper ledges were correctly clustered into two

vertically separated parts; the yard and the staircase leading to it are recognizable, too. Topology also explains

why the waypoints in midair are clustered with the second highest ledge. First of all, the recording player mostly

jumped from there. Second of all, as it is impossible to reach midair points from the ground level, their path length

similarity to the points on the ledge is much higher than to the points in the yard even if some of the latter might be

geometrically closer. This example therefore underlines that choosing an appropriate metric is vital for obtaining

reasonable clustering results and that cluster validation is a necessary step of any cluster analysis.

VII. APPLICATION EXAMPLES AND GUIDELINES

K-means clustering is a popular baseline in industry and academia and has been applied to game behavioral data

before. For example, the authors of [21] used k-means for difficulty adjustments in a shooter-type game.

As a more detailed example, consider the the application of k-means and AA to player behavior data from

the MMORPG Tera described in [16]. There, the authors considered 250,000 players’ data and various features

associated with character abilities and gameplay, such as class, race, numbers of monsters killed, number of in-game

friends, skill levels, etc. Given the variation in these features, different normalization options were examined, before

Min-Max normalization was used. The difference between AA and k-means is exemplified in Tables I and II. For

both approaches, 6 to 7 clusters consistently emerged as the best fit. For both algorithms, these clusters shared

a group of players with exceptionally high values across most features (termed Elite) and another exhibiting the

lowest values (termed Stragglers). The remaining clusters were split into four groups: Two with middling scores but

different high scores, one better than the other, but low Plants and Mining skills; and two with comparable scores,

but high Plants and Mining skills. Within these, there are distinct variations across k-means and AA. For example,

AA identified clusters of players with high or low distinctive scores, such as the Auction Devils (successfully use

the auction house) and the Friendly Pros (many friends). In comparison, k-means provides more broadly defined

clusters, e.g. providing several clusters of scores around the averages, and minor variation in specific features.

Following [14], clusters were given descriptive names.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 15

Recall that the central goal of cluster analysis in game analytics is to arrive at interpretable clusters that accurately

encapsulate the behaviors of players. However, given how much games vary in their design, the different types of

questions cluster analysis can be fielded against, and the existence of dozens or even hundreds of models, it is rather

difficult to provide guidelines for which approach to use in which contexts. The degree of variance in purpose,

data, design and behaviors makes this inherently difficult. As outlined in [17], the choice of cluster model can

significantly effect outcome. For example, basic k-means clustering directly assigns players to groups (via cluster

centroids that represent specific behaviors), whereas AA, NMF, and PCA provide basis vectors which span the

space players reside in. This means that players can be described in terms of their coefficients w.r.t. each basis

vector and clustered accordingly.

While this seems to make basic k-means clustering more attractive than other methods as it saves a step in the

analysis, there is an important drawback: k-means clusters represent averages and are thus not always interpretable

in terms of distinct differences in the behavior of players [16].

Given these considerations, it is unlikely that a specific model will generally outperform others. Context, data,

and goals of the analysis must decide which approach to use; this requires expertise not only in cluster analysis,

but also regarding the game under consideration. Yet, there are questions which can inform the choice of a

cluster model:

1) Are the data high-dimensional and/or sparse? If so, consider models tailored to sparse data (AA or NMF).

2) What is the overall goal? To build general models of player behavior or to detect extreme behaviors (e.g.

cheating, gold-farming)? For the former, consider centroid-seeking models (k-means, k-medoids); for the

latter, consider models such as AA.

3) Are the data numerical or relational? For the latter, use spectral clustering or kernel methods.

4) Are the players tightly grouped in variance space, so that k-means might have difficulties distinguishing them?

If so, consider density-based approaches that do not operate on Euclidean distances.

5) Are the data noisy? If so density-based methods might be appropriate as they are better tunable.

VIII. CONCLUSION

Owing to modern tools for data acquisition and storage, collecting behavioral telemetry data from games has

become a commodity. Yet, the analysis of behavioral data still suffers from a dearth of knowledge. In part, this can

be explained by the business value of data which provide competitive advantages to companies. More importantly,

however, it may be because adopting analytics into game development and games research is a relatively recent

idea [3].

Cluster analysis allows for finding latent patterns in game data. Academics and practitioners apply it for game

AI [21]–[24], behavioral profiling [14]–[17], identification of players likely to convert to paying customers [4]–[6],

or progression analysis [18], [20]. The underlying principles are intuitive and there are many open source projects

enabling everyone to run corresponding algorithms on behavioral data (see, for instance, Weka [53], RapidMiner

[54], KNIME [55], or SciPy [56]).

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 16

Yet, while the idea of cluster analysis is straightforward, different algorithms have different strengths and

weaknesses and rely on different assumptions. Further difficulties arise from typical properties of game data such

as high dimensionality, time-dependency, and in-congruent measurement scales.

The goal of this paper was therefore to point out peculiarities of cluster analysis for game behavioral data.

We discussed and reviewed pitfalls, common and uncommon problems, and theoretical foundations of popular

algorithms. In particular, we discussed k-means clustering, matrix factorization, and spectral clustering and exposed

the principles they work on. This was motivated by several years of experience obtained in the game industry and

in games research. We showcased clustering applications by means of practical examples and references to the

literature. These examples underlined the potential of cluster analysis for game design and development but also

revealed that the application of clustering techniques to game behavioral data is still in its infancy.

Not all the issues identified in this paper pertain to cluster algorithms per se but rather to the contexts in which

these techniques are applied. On the one hand, there are issues pertaining to the nature of behavioral data from

games. On the other hand, there are issues related to making sure that analysis results can be delivered to and acted

upon by stakeholders.

This contribution is therefore also “a call to arms” for future work on game analytics. The benefits of using

computational intelligence techniques in game development and marketing have been clearly recognized by now.

What is still missing are a better transfer of research into practice as well as increased efforts towards the development

of methods, algorithms, and tools that clearly address the challenges of game behavior data that we have reviewed

in this paper.

APPENDIX A

A PROBABILISTIC INTERPRETATION OF k-MEANS

In this appendix, we relate k-means clustering to statistical mixture models. Given a data set X = {x1, . . . ,xn},
we look at the probability p(xj) of observing data point xj and note that, if the data form k distinct clusters, xj

may have been produced as follows: First, sample a cluster Ci according to probability p(Ci) where
∑

i p(Ci) = 1

and then sample a data point according to the conditional probability p(x|Ci). Under this model, the probability of

observing xj amounts to

p(xj) =

k∑
i=1

p(xj |Ci) p(Ci). (20)

Next, we write p(Ci) = πi and assume the elements of each cluster to be distributed according to a multivariate

Gaussian p(x|Ci) = N (x|µi,Σi). If we further assume them to be isotropic, their covariance matrices are Σi = σ2
i I

and we have

N (x|µi, σi) ∝ e
− ‖x−µi‖

2

2σ2
i . (21)

Now, if we believe the data to originate from a mixture of k Gaussians, we must next determine suitable model

parameters θ = {π1,µ1, σ1, . . . , πk,µk, σk}. In statistical modeling, best estimates are often determined using

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 17

maximum likelihood techniques. In our case, the likelihood function is given by

L(θ|X) =

n∏
j=1

p(xj) =

n∏
j=1

k∑
i=1

πi N (xj |µi, σi) (22)

and the corresponding log-likelihood L = logL amounts to

L(θ|X) =

n∑
j=1

log

[
k∑

i=1

πi N (xj |µi, σi)

]
. (23)

Suitable parameters then result from deriving (23), equating to zero, and solving the resulting equations. Alas,

for Gaussian mixtures, this leads to coupled systems of equations without closed form solutions. Moreover, the

problem would be much easier, if we knew which component a data point came from. In their seminal paper on the

expectation maximization (EM) algorithm, Dempster et al. [40] therefore proposed to pretend this information was

available and to introduce additional latent variables whose values must be estimated, too. Let us therefore assume

a set Z = {z11, z12, . . . , znk} of indicator variables just as introduced in (2). We can then express the complete

likelihood of our problem as follows

L(θ|X,Z) =
n∏

j=1

k∑
i=1

zij πi N (xj |µi, σi). (24)

The key observation at this point is that zij ∈ {0, 1} and that
∑

i zij = 1. Because of these peculiar properties,

we have
k∑

i=1

zij πi N (xj |µi, σi) =

k∏
i=1

[
πi N (xj |µi, σi)

]zij
(25)

so that the corresponding complete log-likelihood becomes

L(θ|X,Z)=
n∑

j=1

k∑
i=1

zij

[
log πi + logN (xj |µi, σi)

]

=

n∑
j=1

k∑
i=1

zij log πi −
n∑

j=1

k∑
i=1

zij
2σ2

i

∥∥xj − µi

∥∥2 (26)

Note that we just found the k-means objective in (3) as a term on the right hand side of (26) and that minimizing

(3) maximizes (26). Also, observe that the k-means procedure implicitly sets σ2
i = 1/2 and therefore determines a

particularly simplified Gaussian mixture model.

APPENDIX B

THE BASIS FOR k-MEDOIDS CLUSTERING

Here, we prove a lemma that justifies the idea of k-medoids clustering. For brevity, we only consider Euclidean

distances; extensions to other distance measures are straightforward.

Lemma 1. Given X = {x1, . . . ,xn} ⊂ Rm, let µ = 1
n

∑
i xi be the sample mean and ‖·‖ be the Euclidean norm.

Then

1

n

∑
i

∥∥xj − xi

∥∥2 ≤ 1

n

∑
i

∥∥xk − xi

∥∥2
November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 18

implies that∥∥xj − µ
∥∥2 ≤ ∥∥xk − µ

∥∥2.
That is, the point xj ∈ X with the smallest average distance to all other points in X is closest to the sample mean

µ.

Proof: Note that

1

n

∑
i

∥∥xj − xi

∥∥2 =
1

n

∑
i

∥∥(xj − µ)− (xi − µ)
∥∥2.

Expanding the square, the right hand side becomes

1

n

∑
i

(∥∥xj − µ
∥∥2 + ∥∥xi − µ

∥∥2 − 2(xj − µ)T (xi − µ)
)

=
∥∥xj − µ

∥∥2 + 1

n

∑
i

∥∥xi − µ
∥∥2 − 2(xj − µ)T (µ− µ)

=
∥∥xj − µ

∥∥2 + 1

n

∑
i

∥∥xi − µ
∥∥2

Plugging this into the above inequality establishes the claim.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 19

REFERENCES

[1] J. Bohannon, “Game-Miners Grapple With Massive Data,” Science, vol. 330, no. 6000, 2010.

[2] C. Thompson, “Halo 3: How Microsoft Labs Invented a New Science of Play,” Wired Magazin, vol. 15, no. 9, 2007.

[3] M. Seif El-Nasr, A. Drachen, and A. Canossa, Eds., Game Analytics – Maximizing the Value of Player Data. Springer, 2013.

[4] T. Davenport and J. Harris, Competing on Analytics: The New Science of Winning. Harvard Business Review Press, 2007.

[5] T. Fields and B. Cotton, Social Game Design: Monetization Methods and Mechanics. Morgan Kaufmann, 2011.

[6] E. Seufert, Freemium Economics: Leveraging Analytics and User Segmentation to Drive Revenue. Morgan Kauffman, 2014.

[7] G. Zoeller, “Game Development Telemetry in Production,” in Game Analytics – Maximizing the Value of Player Data, M. Seif El-Nasr,

A. Drachen, and A. Canossa, Eds. Springer, 2013.

[8] Y.-T. Lee, K.-T. Chen, Y.-M. Cheng, and C.-L. Lei, “World of Warcraft Avatar History Dataset,” in Proc. Multimedia Systems, 2001.

[9] R. Bellman, Dynamic Programming. Princeton University Press, 1957.

[10] D. Donoho and J. Tanner, “Neighborliness of Randomly Projected Simplices in High Dimensions,” PNAS, vol. 102, no. 27, 2005.

[11] P. Hall, J. Marron, and A. Neeman, “Geometric Reprsentations of High Dimension, Low Sample Size Data,” J. Royal Statistical Society

B, vol. 67, no. 3, 2005.

[12] F. Murtagh, “The Remarkable Simplicity of Very High Dimensional Data: Applications of Model-based Clustering,” J. of Classification,

vol. 26, no. 3, 2009.

[13] R. Thawonmas and K. Iizuka, “Visualization of Online-game Players Based on Their Action Behaviors,” Int. J. of Computer Games

Technology, vol. 2008, 2008.

[14] A. Drachen, A. Canossa, and G. Yannakakis, “Player Modeling using Self-Organization in Tomb Raider: Underworld,” in Proc. CIG, 2009.

[15] K. Shim and J. Srivastava, “Behavioral Profiles of Character Types in EverQuest II,” in Proc. CIG, 2010.

[16] A. Drachen, R. Sifa, C. Bauckhage, and C. Thurau, “Guns, Swords, and Data: Clustering of Player Behavior in Computer Games in the

Wild,” in Proc. CIG, 2012.

[17] A. Drachen, C. Thurau, R. Sifa, and C. Bauckhage, “A Comparison of Methods for Player Clustering via Behavioral Telemetry,” in

Proc. FDG, 2013.

[18] C. Thurau and C. Bauckhage, “Analyzing the Evolution of Social Groups in World of Warcraft,” in Proc. CIG, 2010.

[19] C. Bauckhage, K. Kersting, R. Sifa, C. Thurau, A. Drachen, and A. Canossa, “How Players Lose Interest in Playing a Game: An Empirical

Study Based on Distributions of Total Playing Times,” in Proc. CIG, 2012.

[20] R. Sifa, A. Drachen, and C. Bauckhage, “Behavior Evolution in Tomb Raider Underworld,” in Proc. CIG, 2013.

[21] O. Missura and T. Gärtner, “Player Modeling for Intelligent Difficulty Adjustment,” in Proc. Discovery Science, 2009.

[22] B. Weber and M. Mateas, “A Data Mining Approach to Strategy Prediction,” in Proc. CIG, 2009.

[23] G. Yannakakis and J. Hallam, “Real-time game adaptation for optimizing player satisfaction,” IEEE Trans. Computational Intelligence and

AI in Games, vol. 1, no. 2, 2009.

[24] G. Yannakakis, “Game AI Revisited,” in Prof. Conf. on Computing Frontiers, 2012.

[25] A. Drachen, C. Thurau, J. Togelius, G. Yannakakis, and C. Bauckhage, “Game Data Mining,” in Game Analytics – Maximizing the Value

of Player Data, M. Seif El-Nasr, A. Drachen, and A. Canossa, Eds. Springer, 2013.

[26] H. Munoz-Avila, C. Bauckhage, M. Bida, C. Bates Congdon, and G. Kendall, “Learning and Game AI,” in Artificial and Computational

Intelligence in Games, S. Lucas, M. Mateas, M. Preuss, P. Spronck, and J. Togelius, Eds. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, 2013.

[27] C. Aggarwal and C. Reddy, Eds., Data Clustering: Algorithms and Applications. Chapman & Hall/CRC, 2013.

[28] V. Estivill-Castro, “Why So Many Clustering Algorithms: A Position Paper,” ACM SIGKDD Explorations Newsletter, vol. 4, no. 1, 2002.

[29] M. Ester, H.-P.Kriegel, J. Sander, and X. Xu, “A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,”

in Proc. KDD, 1996.

[30] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, 1995.

[31] C. Bauckhage and K. Kersting, “Efficient Information Theoretic Clustering on Discrete Lattices,” in Proc. KDML-LWA, 2012.

[32] K. Isbister and N. Schaffer, Game Usability. Morgan Kauffman, 2008.

[33] C. Thurau, K. Kersting, and C. Bauckhage, “Yes We Can – Simplex Volume Maximization for Descriptive Web-Scale Matrix Factorization,”

in Proc. CIKM, 2010.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 20

[34] C. Thurau, K. Kersting, M. Wahabzada, and C. Bauckhage, “Convex Non-negative Matrix Factorization for Massive Datasets,” Knowledge

and Information Systems, vol. 29, no. 2, 2011.

[35] C. Thurau, K. Kersting, and C. Bauckhage, “Deterministic CUR for Improved Large-Scale Data Analysis: An Empirical Study,” in

Proc. SDM, 2012.

[36] D. MacKay, Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.

[37] D. Aloise, A. Deshapande, P. Hansen, and P. Popat, “NP-Hardness of Euclidean Sum-of-Squares Clustering,” Machine Learning, vol. 75,

no. 2, 2009.

[38] P. Bradley and U. Fayyad, “Refining Initial Points for K-Means Clustering,” in Proc. ICML, 1998.

[39] D. Arthur and S. Vassilvitskii, “k-means++: The Advantages of Careful Seeding,” in Proc. SODA, 2007.

[40] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm.” J. Royal Statistical Society

B, vol. 39, no. 1, 1977.

[41] J. Shaw-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.

[42] A. Cutler and L. Breiman, “Archetypal Analysis,” Technometrics, vol. 36, no. 4, 1994.

[43] D. Lee and S. Seung, “Learning the Parts of Objects by Non-Negative Matrix Factorization,” Nature, vol. 401, no. 6755, 1999.

[44] D. Donoho and V. Stodden, “When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?” in Proc. NIPS,

2003.

[45] R. Sifa and C. Bauckhage, “Archetypical Motion: Supervised Game Behavior Learning with Archetypal Analysis,” in Proc. CIG, 2013.

[46] C. Bauckhage and C. Thurau, “Towards a Fair ’n Square Aimbot – Using Mixtures of Experts to Learn Context Aware Weapon Handling,”

in Proc. GAME-ON, 2004.

[47] B. Gorman, M. Fredriksson, and M. Humphrys, “The QASE API - An Integrated Platform for AI Research and Education Through

First-Person Computer Games,” Int. J. of Intelligent Games and Simulations, vol. 4, no. 2, 2007.

[48] M. Fiedler, “A Property of Eigenvectors of Nonnegative Symmetric Matrices and its Application to Graph Theory,” Czechoslovak

Mathematical J., vol. 25, no. 4, 1975.

[49] A. Ng, M. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an Algorithm,” in Proc. NIPS, 2001.

[50] I. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means, Spectral Clustering and Normalized Cuts,” in Proc. KDD, 2004.

[51] U. von Luxburg, “A Tutorial on Spectral Clustering,” arXiv, 2007.

[52] K. Rohe, S. Chatterjee, and B. Yu, “Spectral Clustering and the High-dimensional Stochastic Block Model,” The Annals of Statistics,

vol. 39, no. 4, 2011.

[53] Weka, www.cs.waikato.ac.nz/ml/weka/.

[54] RapidMiner, rapidminer.com/.

[55] Knime, www.knime.org.

[56] SciPy, www.scipy.org.

Christian Bauckhage is professor of media informatics and pattern recognition at the University of Bonn and

lead scientists for media engineering at Fraunhofer IAIS in Bonn, Germany. Previously, he worked at the Centre

for Vision Research in Toronto, Canada, and was a senior research scientist at Deutsche Telekom Laboratories in

Berlin. His research focuses on descriptive data mining and machine learning for multimedia and computer games. He

regularly publishes conference papers and journal articles and frequently serves on program committees and editorial

boards; among others, Prof. Bauckhage is an Associate Editor of the IEEE TRANSACTIONS ON COMPUTATIONAL

INTELLIGENCE AND AI IN GAMES.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 21

Anders Drachen is currently an Assistant Professor at Aalborg University (Denmark) and Lead Game Analyst for Game

Analytics (Copenhagen/Berlin). His work is focused on game analytics, game user research, business intelligence for

games, game data mining, behavioral modeling, virtual economics, game user experience, and business development.

He writes about analytics for game development on blog.gameanalytics.com, and about game- and data science in

general on andersdrachen.com. His contributions can also be found on the pages of trade publications such as Game

Developer Magazine and Gamasutra.com and in the book “Game Analytics – Maximizing the Value of Player Data”.

Rafet Sifa received his M.Sc. degree in Computer Science from the University of Bonn in 2013. He is currently a

Ph.D. student at the University of Bonn and a data scientist at Fraunhofer IAIS. His research focuses an statistical

approaches to game data mining for decision making and game recommender systems.

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MONTH 2014 22

LIST OF FIGURES

1 Example of a 3D heatmap (courtesy of Game Analytics) based on death events in the game Angry Bots.
Red areas indicate high player death counts. Heatmaps like this can visualize aspects of behavioral
data, are intuitive to understand and allow for, say, identifying flaws in game design. Yet, they do not
reveal underlying causes or correlations among latent features that would explain observed frequency
counts. 23

2 k-means clustering in action. In this didactic example, 150 data points (◦) were sampled from three
bivariate Gaussians and the number of clusters to be found was set to k = 3. Since the procedure
is tailored towards Gaussian mixtures and since the initial choice of centroids (�) was favorable, it
took only five iterations to converge to the globally optimal solution. Generally, however, there is no
guarantee for k-means to behave like this. In practice, one should always run it several times and base
any further analysis on the result that produced the minimal sum of distances according to Eq. (1). . 24

3 Simple example of the limitations of k-means clustering. Because k-means implicitly assumes locally
Gaussian data, it produces clusters that form compact convex subsets of a set of data. Here, the
data form two distinguishable lines which are very much apparent to human observers. Yet, naı̈ve
applications of k-means fail to uncover these structures. Generally, data should be properly whitened
in order for the algorithm to stand a chance of producing results that coincide with human intuition.
However, even then there is no guarantee for k-means to succeed in this regard. 25

4 Another examples for the possible “misbehavior” of k-means clustering. Applied to the location vectors
of the vertices of a waypoint graph, even repeated runs of the algorithm produce unreasonable results
because it only considers local geometry (distances to centroids). Methods such as spectral clustering,
however, operate on relational information (edges between vertices) and therefore produce results that
comply with the topology of a set of data. 26

5 Screenshots showing a prominent area of the popular Quake II map q2dm1. During a match, players
moving in any of the highlighted locations may have to behave according to constraints or tactics
that apply to these locations. That is, they will have to behave differently, depending on where they
are located. The highlighted locations therefore form semantically distinct parts of the map and the
question is if these can be determined through clustering. 27

6 Waypoint map of 200 nodes resulting from k-means clustering of player trajectories recorded on the
map in Fig. 5. Stairs, yard, upper ledges, and elevator leading to the latter are recognizable. Expert
maneuvers such as strafe jumping from the ledges caused several waypoints to occur “in midair”. . . 28

7 Results of clustering the waypoint map in Fig. 6 into 4 areas using ward-linkage, k-means, and spectral
clustering, respectively. Ward-linkage groups together locations from different parts of the map. k-
means clustering performs slightly better, however, it splits the upper ledges which does not reflect the
map’s topology. Spectral clustering, however, produces clusters that indeed reflect architectural features
of the map. 29

8 Results after spectral clustering of the waypoint map in Fig. 6. 30

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 23

Fig. 1

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 24

(a) (b) (c)

Fig. 2

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 25

0.0 0.5 1.0 1.5 2.0 2.5

0.0
0.5

1.0
1.5

2.0
2.5

(a)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5
1.0

1.5
2.0

2.5

(b)

−2 −1 0 1 2

−
2

−
1

0
1

2

(c)

−0.2 −0.1 0.0 0.1 0.2

−
0.2

−
0.1

0.0
0.1

0.2

(d)

Fig. 3

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 26

(a) (b) (c) (d)

Fig. 4

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 27

Fig. 5

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 28

800
1000 1200 1400 1600 1800

0

200

400

600

800

1000
1200

400

500

600

700

800

900

1000

1100

Fig. 6

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 29

800
1000

1200
1400

1600 1800

0

200

400

600

800

1000

1200

500

600

700

800

900

1000

(a)

800
1000

1200
1400

1600 1800

0

200

400

600

800

1000

1200

500

600

700

800

900

1000

(b)

800
1000

1200
1400

1600 1800

0

200

400

600

800

1000

1200

500

600

700

800

900

1000

(c)

Fig. 7

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 30

800
1000

1200
1400

1600 1800

0

200

400

600

800

1000

1200

500

600

700

800

900

1000

(a)

800
1000

1200
1400

1600 1800

0

200

400

600

800

1000

1200

500

600

700

800

900

1000

(b)

Fig. 8

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 31

LIST OF TABLES

I Archetypal Analysis For Tera Online . 32
II k-means for Tera Online . 33

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

TABLES 32

TABLE I

cluster designation % players characteristics
Elite 3.9 high scores except for mining, plant-

ing, or deaths; no auctions created
Stragglers 7.6 low scores overall; die a lot
Planters 21.6 medium scores; high planting skills
Miners 15.0 medium scores; high mining skills
Auction Devils 1.1 highest auction and achievement

scores; 2nd ranked loot and kills
scores; 2nd ranked friend scores;
high mining score

Friendly Pros 50.8 highest friend scores; from low auc-
tion scores; 2nd lowest loot scores

November 27, 2014 DRAFT

1943-068X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2014.2376982, IEEE Transactions on Computational Intelligence and AI in Games

TABLES 33

TABLE II

cluster designation % players characteristics
Elite 5.8 high scores except for mining and

planting
Stragglers 39.4 low scores overall; die a lot
Average Joes 12.7 better scores across all categories

than Stragglers; 4th ranked overall
Dependables 18.6 average scores across all categories;

high number of friends; 3rd ranked
overall; 2nd rank in monster kills

Worker I 15.9 similar to the Average Joes, but
high mining and plating scores; 3rd
ranked loot scores

Worker II 7.6 similar to The Dependables, but
highest mining and planting scores;
2nd ranked overall; 2nd ranked loot
scores

November 27, 2014 DRAFT

